Kesan seniman tentang planet raksasa gas yang sangat tipis yang mengorbit bintang katai merah. Raksasa gas luar [right] Kepadatan Marshmallow terdeteksi di orbit sekitar katai merah dingin [left] dari Instrumen Kecepatan Radial NEID yang didanai NASA pada Teleskop WIYN 3,5 meter di Observatorium Nasional Kitt Peak, sebuah program dari NSF NOIRLab. Ditunjuk TOI-3757 b, planet ini adalah planet raksasa gas tertipis yang pernah ditemukan di sekitar bintang jenis ini. Kredit: NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani
Teleskop Kitt Peak dari Observatorium Nasional membantu menentukan ini[{” attribute=””>Jupiter-like Planet is the lowest-density gas giant ever detected around a red dwarf.
A gas giant exoplanet with the density of a marshmallow has been detected in orbit around a cool red dwarf star. A suite of astronomical instruments was used to make the observations, including the NASA-funded NEID radial-velocity instrument on the WIYN 3.5-meter Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. Named TOI-3757 b, the exoplanet is the fluffiest gas giant planet ever discovered around this type of star.
Using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory in Arizona, astronomers have observed an unusual Jupiter-like planet in orbit around a cool red dwarf star. Located in the constellation of Auriga the Charioteer around 580 light-years from Earth, this planet, identified as TOI-3757 b, is the lowest-density planet ever detected around a red dwarf star and is estimated to have an average density akin to that of a marshmallow.
Red dwarf stars are the smallest and dimmest members of so-called main-sequence stars — stars that convert hydrogen into helium in their cores at a steady rate. Although they are “cool” compared to stars like our Sun, red dwarf stars can be extremely active and erupt with powerful flares. This can strip orbiting planets of their atmospheres, making this star system a seemingly inhospitable location to form such a gossamer planet.
Shubham Kanodia, seorang peneliti di Carnegie Institution for Science’s Earth and Planetary Laboratory dan penulis pertama di Jurnal Astrologike. Sejauh ini hanya terlihat oleh sampel kecil survei Doppler, yang biasanya menemukan planet raksasa yang jauh dari katai merah. Sampai sekarang, kami belum memiliki sampel planet yang cukup besar untuk menemukan planet gas terdekat dengan andal.”
Masih ada misteri yang belum terpecahkan seputar TOI-3757 b, terutama bagaimana planet gas raksasa dapat terbentuk di sekitar katai merah, terutama planet jarang. Namun, tim Kanodia berpikir mereka mungkin memiliki solusi untuk misteri ini.

Dari Bumi, teleskop 3,5 meter Wisconsin-Indiana-Yale-Noirlab (WIYN) dari Kit Peak National Observatory (KPNO), sebuah program NSF NOIRLab, tampaknya mengamati Bima Sakti saat meninggalkan cakrawala. Cahaya atmosfer yang kemerahan, sebuah fenomena alam, juga mewarnai cakrawala. KPNO terletak di Gurun Sonora Arizona di Tohono O’odham Nation, dan pemandangan yang jelas dari bagian bidang Bima Sakti ini menunjukkan kondisi yang menguntungkan di lingkungan ini yang diperlukan untuk melihat benda langit yang keruh. Kondisi ini, yang meliputi polusi cahaya rendah, langit 20 derajat lebih gelap, dan kondisi cuaca kering, telah memungkinkan para peneliti dari konsorsium WIYN untuk terus mengamati galaksi, nebula, dan planet ekstrasurya, serta banyak target astronomi lainnya menggunakan WIYN 3.5. teleskop meter dan saudaranya, teleskop WIYN 0,9 meter. . Kredit: KPNO/NOIRLab/NSF/AURA/R. Percikan
Mereka menyarankan bahwa kepadatan TOI-3757 b yang sangat rendah mungkin disebabkan oleh dua faktor. Yang pertama berkaitan dengan inti berbatu planet ini; Raksasa gas diyakini telah dimulai sebagai inti berbatu besar sekitar 10 kali massa Bumi, di mana mereka dengan cepat menarik sejumlah besar gas di dekatnya untuk membentuk raksasa gas yang kita lihat sekarang. TOI-3757b memiliki kelimpahan elemen berat yang lebih rendah daripada katai-M lainnya dengan raksasa gas, dan ini mungkin menghasilkan nukleasi batuan yang lebih lambat, menunda timbulnya akumulasi gas dan dengan demikian mempengaruhi kepadatan keseluruhan planet.
Faktor kedua mungkin orbit planet, sementara dianggap sedikit elips. Terkadang lebih dekat ke bintangnya daripada waktu lainnya, menyebabkan panas berlebih yang signifikan yang dapat menyebabkan atmosfer planet membengkak.
Satelit transit NASA untuk survei planet ekstrasurya ([{” attribute=””>TESS) initially spotted the planet. Kanodia’s team then made follow-up observations using ground-based instruments, including NEID and NESSI (NN-EXPLORE Exoplanet Stellar Speckle Imager), both housed at the WIYN 3.5-meter Telescope; the Habitable-zone Planet Finder (HPF) on the Hobby-Eberly Telescope; and the Red Buttes Observatory (RBO) in Wyoming.
TESS surveyed the crossing of this planet TOI-3757 b in front of its star, which allowed astronomers to calculate the planet’s diameter to be about 150,000 kilometers (100,000 miles) or about just slightly larger than that of Jupiter. The planet finishes one complete orbit around its host star in just 3.5 days, 25 times less than the closest planet in our Solar System — Mercury — which takes about 88 days to do so.
The astronomers then used NEID and HPF to measure the star’s apparent motion along the line of sight, also known as its radial velocity. These measurements provided the planet’s mass, which was calculated to be about one-quarter that of Jupiter, or about 85 times the mass of the Earth. Knowing the size and the mass allowed Kanodia’s team to calculate TOI-3757 b’s average density as being 0.27 grams per cubic centimeter (about 17 grams per cubic feet), which would make it less than half the density of Saturn (the lowest-density planet in the Solar System), about one quarter the density of water (meaning it would float if placed in a giant bathtub filled with water), or in fact, similar in density to a marshmallow.
“Potential future observations of the atmosphere of this planet using NASA’s new James Webb Space Telescope could help shed light on its puffy nature,” says Jessica Libby-Roberts, a postdoctoral researcher at Pennsylvania State University and the second author on this paper.
“Finding more such systems with giant planets — which were once theorized to be extremely rare around red dwarfs — is part of our goal to understand how planets form,” says Kanodia.
The discovery highlights the importance of NEID in its ability to confirm some of the candidate exoplanets currently being discovered by NASA’s TESS mission, providing important targets for the new James Webb Space Telescope (JWST) to follow up on and begin characterizing their atmospheres. This will in turn inform astronomers what the planets are made of and how they formed and, for potentially habitable rocky worlds, whether they might be able to support life.
Reference: “TOI-3757 b: A low-density gas giant orbiting a solar-metallicity M dwarf” by Shubham Kanodia, Jessica Libby-Roberts, Caleb I. Cañas, Joe P. Ninan, Suvrath Mahadevan, Gudmundur Stefansson, Andrea S. J. Lin, Sinclaire Jones, Andrew Monson, Brock A. Parker, Henry A. Kobulnicky, Tera N. Swaby, Luke Powers, Corey Beard, Chad F. Bender, Cullen H. Blake, William D. Cochran, Jiayin Dong, Scott A. Diddams, Connor Fredrick, Arvind F. Gupta, Samuel Halverson, Fred Hearty, Sarah E. Logsdon, Andrew J. Metcalf, Michael W. McElwain, Caroline Morley, Jayadev Rajagopal, Lawrence W. Ramsey, Paul Robertson, Arpita Roy, Christian Schwab, Ryan C. Terrien, John Wisniewski and Jason T. Wright, 5 August 2022, The Astronomical Journal.
DOI: 10.3847/1538-3881/ac7c20